P-Bis(trifluoromethyl) Ylides: Synthesis and Reactions

Uwe Dieckbreder,¹ Gerd-Volker Röschenthaler,¹ and Alexander A. Kolomeitsev²

¹Institute für Anorganische & Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Germany

²Institute of Organic Chemistry, Ukrainian Academy of Sciences, Murmanskaya 5, 02094 Kiev, Ukraine

Received 11 January 2002; revised 5 February 2002

ABSTRACT: Bis(trifluoromethyl)phosphines RP-(CF₃)₂ (R=Me, NEt₂) were methylated by MeOSO₂-CF₃, yielding the respective phosphonium salts [RP(CF₃)₂Me]⁺ and CF₃SO₃⁻. Deprotonation using MeN=P(NEt₂)₃ led to the phosphorus ylides RP-(CF₃)₂=CH₂, stable in solution at ambient temperature, which could be converted into $1,2\lambda^5\sigma^5$ -oxaphosphetanes by adding hexafluoroacetone. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:650–653, 2002; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/hc.10061

INTRODUCTION

Phosphorus ylides are versatile reactants in organic chemistry, e.g. in the synthesis of naturally ocurring compounds [1]. There are only a few ylides containing fluorine or perfluoroalkyl groups in the alkylidene moiety [2] and not many *P*-halogeno derivatives [3]. Recently, we synthesized the first *P*-trifluoromethyl ylides, having one CF_3 group

bonded to phosphorus [4]. Because the phosphines $RP(CF_3)_2$ (R = Me, NEt₂) are easily accessible by using "Ruppert's reagent" [5] [CF₃Br/P(NEt₂)₃], methylation followed by deprotonation should yield the desired ylides.

RESULTS AND DISCUSSION

The Ruppert-system $CF_3Br/(Et_2N)_3P$ [5] proved to be a useful system to synthesize the bis(trifluoromethyl)phosphines **2a–c** as oxygen-sensitive liquids (**2a** being pyrophoric) from the respective dichlorophosphines **1a–c** (Scheme 1) in good yields. Compounds **2a** and **2c** have already been obtained by other methods [6,7].

While 2b and 2c could be obtained in dichloromethane, in the case of 2a (R = Me), triglyme had to be used as a solvent because of its higher boiling point, necessary to isolate 2a (bp 30°C). Methylation was possible only using methyl triflate at 100°C without a solvent to give the first bis-trifluoromethyl phosphonium salts 3a and 3c, moisture sensitive compounds, in good yields. In the case of **2b**, decomposition was observed during this procedure. Compounds **3a** and **3c** decomposed rapidly in diethyl ether and THF. The phosphonium triflates 3a and 3c could be deprotonated using as a neutral base a weak nucleophile Nmethyliminotris(diethylamino) phosphine imide 4 $[pK_s = 28]$ [8], yielding the desired ylides **5a** and **5c** (Scheme 2) which were stable in solution at room temperature, whereas CF₃Me₂P=CH₂ decomposed at

Presented in part at the *XIII Int Conf on Phosphorus Chemistry*, Jerusalem, Israel, July 16–21, 1995; A. A. Kolomeitsev, M. Goerg, U. Dieckbreder, E. Lork, G.-V. Röschenthaler, *Phosphorus, Sulfur Silicon* Relat Elem **109**, 1996, 597–600.

Correspondence to: Gerd-Volker Röschenthaler or Alexander Kolomeitsev; e-mail: gvr@chemie.uni-bremen.de; alex@chemie. uni-bremen.de.

Contract grant sponsor: Deutsche Forschungsgemeinschaft.

Contract grant number: 436 UKR 113/36/0.

$$\begin{array}{r} \mathsf{RPCI}_2 \ + \ 2 \ \mathsf{CF}_3\mathsf{Br} & \xrightarrow{2 \ (\mathsf{Et}_2\mathsf{N})_3\mathsf{P}} & \mathsf{RP}(\mathsf{CF}_3)_2 \\ \hline & -2(\mathsf{Et}_2\mathsf{N})_3\mathsf{PCI}^+ \ \mathsf{Br}^- & \mathbf{2a-c} \\ \mathbf{a} \ : \ \mathsf{R} \ = \ \mathsf{Me}, \\ \mathbf{b} \ : \ \mathsf{R} \ = \ i\!\mathsf{Pr}, \\ \mathbf{c} \ : \ \mathsf{R} \ = \ \mathsf{Et}_2\mathsf{N} \end{array}$$

SCHEME 1

temperatures as low as -50° C. It was of advantage to obtain the nonvolatile amidophosphonium salt, $[(Et_2N)_3PNHMe]^+CF_3SO_3^-$, which could easily be separated (Scheme 2).

The reaction of the bis(trifluoromethyl) ylides 5a and 5c with hexafluoroacetone furnished the 2,2,4,4tetrakis(trifluoromethyl)-1,2 $\lambda^5 \sigma^5$ -oxaphosphetanes, 6a and 6c, as colourless, moisture-sensitive liquids (Scheme 3).

The structure of the compounds 2-6 was confirmed by their NMR spectra (see Table 1). The ylides **5a** and **5c** were characterized at -70° C. In the ¹⁹F NMR spectra for the *P*-CF₃ groups at 308 K, broad doublets were observed, while sharp singlets were recorded for the C-CF₃ groups. Because of Berrypseudorotation, which was fast on the NMR time scale, axial and equatorial CF₃ substituents at phosphorus could not be distinguished. Cooling a solution of phosphetane **6c** ($R = Et_2N$) in toluene-d₈ slowed down the ligand permutation process, resulting in the magnetic inequivalence of the $P-CF_3$ groups and, also of the C-CF3 groups (cis and trans with respect to the equatorial P-CF₃) below the coalescence temperature of 273 K. At 213 K, a doublet of quartets for the axial P-CF₃ was observed

decomposition

 $(\delta = -62.6, {}^{2}J_{FP} = 52.4, {}^{4}J_{FF} = 13.9$ Hz), a doublet of quartets for the equatorial *P*-CF₃ group ($\delta =$ -67.0, ${}^{2}J_{\text{FP}} = 123.0$, ${}^{4}J_{\text{FF}} = 13.9$ Hz) split further by "through-space" coupling $(J_{F - F} = 7.0 \text{ Hz})$ between C-CF₃(cis) and P-CF₃(equatorial). The smaller absolute value of ${}^{2}J_{\text{FP}} = 52.4$, compared to ${}^{2}J_{\text{FP}} = 123.0$ H, is typical of an axially bonded CF₃ moiety [4,9]. In a similar oxaphosphetane, $F \cdots F$ "through-space" coupling C-CF₃(cis) \cdots P-CF₃(equatorial) was found $(J_{\rm F...F} = 4.7 \text{ Hz})$ [9].

TABLE 1 NMR Data of 2a-c, 3a, 3c, 5a, 5c, 6a, and 6c at 308 K (J in Hz)

Compound	δ _Η (P-CH) ^a (² J _{HP})	δ _F (P-CF ₃) ^a	δ _F (C-CF ₃) ^a	δ _P a (² J _{FP})
2a	0.95	-62.2		-5.0
2b ^b	(4.4) 2.47 (6.8) 2.95 (16.8) 3.08 (13.8)	-53.1		(75.7) 13.9
2c ^{<i>c</i>}		-59.8		(65.2) 41.7
3a ^d		-54.7		(86.6) 59.8
3c ^{<i>e</i>}		-61.9		(108.8) 47.7
5a ^f		-67.0		(113.4) 17.8
5c ^f		-71.9		(79.3) 32.2
6a	1.25, 3.45 ^g (15.5), (17.1) 3.03 ^g (16.0)	-66.9	-78.5	(87.5) -60.7
6c ^{h,i}		-64.0	-77.0	-51.5 (88.0)

^aHigh-field shifts from TMS, CCl₃F, and 85% H₃PO₄ were given negative signs.

^{b1}H: $\delta = 1.19$ (6 H, Me_2 CH, dd, ${}^{3}J_{HH} = 6.9$, ${}^{3}J_{HP} = 16.2$).

^{c1}H: $\delta = 0.88$ (6 H, *Me*CH₂, t, ³J_{HH} = 7.1), 2.95 (4 H, CH₃CH₂, dq, ${}^{3}J_{HP} = 10.7$). ${}^{d_{19}}F: \delta = -74.8 \text{ (s, } F_{3}CSO_{3}{}^{-}).$

- ^{e1}H: $\delta = 1.27$ (6 H, CH_3CH_2 , t, $^3J_{HH} = 7.1$), 3.48 (4 H, CH_3CH_2 , dq, ${}^{3}J_{HP} = 12.8$); ${}^{19}F: \delta = -74.2$ (s, $F_{3}CSO_{3}^{-}$).
- ^f1H: Not observed because of overlapping signals of (Et₂N)₃PNMe. ^gPCH₂.
- ^{h1}H: $\delta = 0.77$ (6 H, CH₃CH₂, t, ³J_{HH} = 6.9), 3.03 (4 H, CH₃CH₂, dq,

 $J_{HP} = 13.9$). ${}^{19}F \text{ at } 213 \text{ K:} -62.6 \text{ (P-C}F_3 (ax), {}^2J_{FP} = 52.4, {}^4J_{FF} = 13.9), -67.0 \text{ (P-C}F_3 (eq), {}^2J_{FP} = 123.0, J_{F...F} = 7.0), -77.6 \text{ (C-C}F_3 (cis), qq, {}^4J_{FF} = 7.8, J_{F...F} = 7.0), -77.0 \text{ (C-C}F_3 (trans), {}^4J_{FF} = 7.8).$

	1 (g) ^a	CF ₃ Br (g) ^a	$(Et_2N)_3P(g)^a$	Solvent (ml)	Yield (g) ^b	bp (°C) ^c
2a ^d	1a 11.1 (95)	34.3 (230)	46.9 (190)	Triglyme 150	8.3 (47)	30 (1013)
2b	1b 11.6 (80)	30.0 (200)	39.5 (160)	CH ₂ Cl ₂ 120	4.2 (25)	85 (1013)
2c	1c 8.7 (50)	22.4 (150)	24.7 (100)	CH ₂ Cl ₂ 150	7.7 (64)	59 (100)

TABLE 2 Experimental Details for the Synthesis of Compounds 2a-c

^aValues in parentheses are in millimoles.

^bValues in parentheses are the percent values.

^cValues in parentheses are in millibars.

^dSee Ref. [6].

EXPERIMENTAL

Mass-spectra (EI, 70 eV) were recorded on a Finnigan MAT 8222 spectrometer. NMR spectra were obtained on a Bruker AC 80 instrument operating at 75.39 MHz (19 F, internal standard CCl₃F) and 32.44 MHz (31 P, external standard 85% H₃PO₄). All reactions and manipulations were conducted under an atmosphere of dry nitrogen.

General Procedure for the Synthesis of Compounds **2a–c**

In the respective solvent, bromotrifluoromethane and the dichlorophosphine (**1a–c**) were cooled to -60 to -80° C. Hexaethylphosphorus triamide was added, and the reaction mixture was allowed to warm to ambient temperature. All volatiles were pumped off in vacuo (10^{-3} mbar) and the residue distilled. (See Table 2 for data of **2a–c**.)

Isopropylbis(trifluoromethyl)phosphine (**2b**). Anal calcd for $C_5H_7F_6P$ (212.07): C, 28.30; H, 3.33; F, 53.76; P, 14.61. Found: C, 28.13; H, 3.18; F, 53.10; P, 14.36.

Diethylaminobis(trifluoromethyl)phosphine (**2c**) [7]. MS: m/e (%) = 241 (M⁺, 8), 226 (M⁺ – CH₃, 5), 172 (M⁺ – CF₃, 22), 122 (Et₂NPF⁺, 100), 94 (Et(H)NPF⁺, 7), 69 (CF₃⁺, 18), 29 (C₂H₅⁺, 45), and other fragments.

General Procedure for the Synthesis of Compounds **3a–c**

Compounds **2a–c** and one equivalent, methyltrifluoromethansulfonate were heated in a glass ampoule at 100°C for 16 h. The remaining solid was recrystallized in dichloromethane at -50°C and dried in vacuo (10⁻³ mbar). (See Table 3 for data of **3a–c**.) Dimethylbis(trifluoromethyl)phosphonium triflate (**3a**). Anal calcd for $C_5H_6F_9O_3PS$ (348.12): C, 17.24; H, 1.74; F, 49.14; P, 8.90. Found: C, 17.72; H, 1.89; F, 48.90; P, 8.57.

Diethylaminomethylbis(trifluoromethyl)phosphonium triflate (**3c**). Anal calcd for $C_8H_{13}F_9NO_3PS$ (405.21): C, 23.70; H, 3.23; F, 42.22, P, 7.65. Found: C, 24.02; H, 3.38; F, 41.30: P, 7.42.

General Procedure for the Synthesis of Compounds **5a** and **5c**

To compounds **3a** (0.18 g, 0.52 mmol) and **3c** (0.28 g, 0.69 mmol) one equivalent of $(Et_2N)_3PNMe$ **4** (0.15 g, 0.52 mmol in the case of **3a**; 0.20 g, 0.69 mmol in the case of **3c**) in 3 ml toluolene-d₈ was added at $-80^{\circ}C$. The reaction mixture was allowed to warm, first to $-50^{\circ}C$, then to ambient temperature, and was NMR-spectroscopically characterized. There was no change in the NMR parameters for 2 days. *Methyl-bis(trifluoromethyl)methylene phosphorane* (**5a**) and *diethylamino-bis(trifluoromethyl)methylene phosphorane* (**5c**), according to the NMR evidence, were quantitatively formed.

General Procedure for the Synthesis of Compounds **6a** and **6c**

To a solution of 3a (2.61 g, 7.5 mmol) and 3c (3.49 g, 8.4 mmol) one equivalent of $(Et_2N)_3PNMe 4$ (1.93 g,

TABLE 3Experimental Details for the Synthesis of Compounds3a and 3c

	2 (g) ^a	Yield (g) ^b	mp (°C)
3a	2a 3.68 (20)	6.9 (99)	131
3b ^c	2b 4.24 (20)	100 (12)	
3c	2c 8.44 (35)	12.5 (89)	53

^aValues in parentheses are in millimoles.

^bValues in parentheses are the percent values.

^cNonseparable mixture of decomposition products.

7.0 mmol in the case of **3a**; 2.21 g, 8.0 mmol in the case of **3c**) in 10 ml THF was added at -80° C and stirred for 1 h. The reaction mixture was cooled to -196° C, evacuated and 1.5 equivalents of hexafluoroacetone (2.57 g, 15.5 mmol in the case of **3a**; 2.94 g, 17.7 mmol in the case of **3c**) added. Within 12 h the reaction mixture was allowed to warm to ambient temperature and the volatiles were pumped off in vacuo. The residue was extracted with 5 ml of pentane, which was pumped off in vacuo to yield pure products.

2-Methyl-2,2,4,4-tetrakis(trifluoromethyl)-1,2 $\lambda^5 \sigma^5$ oxaphosphetane (**6a**). mp -15°C. MS: *m/e* (%): 345 (M⁺ - F, 13); 295 (M⁺ - CF₃, 85); 245 (M⁺ - CF₃-CF₂, 100); and other fragments. Anal calcd for C₇H₅F₁₂OP (364.07): C, 23.90; H, 1.38; F, 62.62, P, 8.51. Found: C, 24.02; H, 1.40; F, 61.80: P, 8.42.

2-Diethylamino-2,2,4,4-tetrakis(trifluoromethyl)-1,2 $\lambda^5 \sigma^5$ -oxaphosphetane (**6c**). mp -5°C. MS: m/e (%): 402 (M⁺ - F, 8); 352 (M⁺ - CF₃, 42); 257 [Et₂N(CF₃)₂PO⁺, 19]; 242 [Et₂N(CF₃)₂PH⁺, 100]; 214 [EtHN(CF₃)₂PH⁺, 83]; 164 [F₃CC(CH₂)CF₃⁺, 41]; 145 [H₂CC(CF₃)CF₂⁺, 33]; 95 [H₂CCCF₃⁺, 34]; 69 (CF₃⁺, 36); and other fragments. Anal calcd for C₁₀H₁₂F₁₂NOP (421, 16): C, 28.50; H, 2.87; F, 54.15, P, 7.36. Found: C, 28.84; H, 3.02; F, 54.50: P, 7.39.

ACKNOWLEDGMENTS

We thank the Bayer AG, Leverkusen, the former Hoechst AG, Frankfurt, and Hürth, for generous gifts of chemicals.

REFERENCES

- [1] Kolodiazhnyi, O. I. Phosphorus Ylides: Chemistry and Application in Organic Synthesis; Wiley-VCH: Weinheim, 1999.
- [2] (a) Kolodiazhnyi, O. I. Tetrahedron 1996, 52, 1855– 1929; (b) Kolodiazhnyi, O. I.; Schmutzler, R. Synlett 2001, 1065–1078.
- [3] Kolodiazhnyi, O. I. Russ Chem Rev Engl Transl 1991, 60, 391–409.
- [4] Dieckbreder, U.; Lork, E.; Röschenthaler, G.-V.; Kolomeitsev, A. A. Heteroat Chem 1996, 7, 281– 284.
- [5] (a) Ruppert, I.; Volbach, W. Tetrahedron Lett 1983, 24, 5509; (b) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett 1984, 25, 2195.
- [6] Haszeldine, R. N.; West, B. O. J Chem Soc 1957, 3880– 3883.
- [7] Adler, O.; Kober, F. J Fluorine Chem 1975, 5, 231–238.
- [8] Zal'tsman, I. S.; Koidan, G. N.; Kudryavtsev, A. A.; Marchenko, A. P.; Pinchuk, A. M. Russ J Gen Chem USSR 1989, 59, 1914–1915.
- [9] Kolomeitsev, A. A.; Yagupols'kij, Yu. L.; Gentzsch, A.; Lork, E.; Röschenthaler, G.-V. Phosphorus, Sulfur Silicon Relat Elem 1994, 92, 179–187.